Physics 216, Final Exam

December 16, 2013, 2 hours

Solve ten problems out of twelve

1. Check Stokes' theorem using the function $\vec{V}=a y \widehat{x}+b x \widehat{y}$ (a and b are constants) and the circular path of radius R, centered at the origin in the $x-y$ plane.
2. Show that:
(a) If A is a diagonal matrix with all diagonal elements different, and B is a matrix commuting with $A(A B=B A)$ then B is diagonal.
(b) The trace of a product of a symmetric and antisymmetric matrix is zero.
3. Find the eigenvalues and eigenvectors of the matrix $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$.
4. Use the exponential Fourier series to evaluate the expansion of the delta function $\delta\left(\varphi_{1}-\varphi_{2}\right)$. Use the result to verify that

$$
\frac{1}{2 \pi} \sum_{m=-\infty}^{\infty} \int_{-\pi}^{\pi} f\left(\varphi_{1}\right) e^{i m\left(\varphi_{1}-\varphi_{2}\right)} d \varphi_{1}=f\left(\varphi_{2}\right)
$$

5. A rectangular pulse is described $f(x)=\left\{\begin{array}{ll}1, & |x|<a \\ 0, & |x|>a\end{array}\right.$. Find the exponential Fourier transform $F(t)$ then use Parseval's theorem to evaluate the integral $\int_{-\infty}^{\infty} \frac{\sin ^{2} t}{t^{2}} d t$.
6. Let $\left\{Q_{n}, \quad n=0, \cdots, \infty\right\}$ be an orthogonal set of Sturm-Liouville polynomials with respect to the weight function $w(x)$

$$
\int_{-\infty}^{\infty} w(x) Q_{n}(x) Q_{m}(x) d x=0, \quad n \neq m
$$

where $Q_{n}(x)$ satisfies the differential equation $\frac{1}{w} \frac{d}{d x}\left(w \alpha(x) \frac{d Q_{n}}{d x}\right)+\lambda_{n} Q_{n}=0$. Show that $\left\{Q_{n}^{\prime}=\frac{d Q_{n}}{d x}, \quad n=1, \cdots, \infty\right\}$ satisfy the property

$$
\int_{-\infty}^{\infty} w(x) \alpha(x) Q_{n}^{\prime}(x) Q_{m}^{\prime}(x) d x=0, \quad n \neq m
$$

Hint: Integrate by parts only on one of the $\frac{d Q_{n}}{d x}$ and use the defining equation for Q_{n}.
7. Using only the generating function

$$
e^{\frac{x}{2}\left(t-\frac{1}{t}\right)}=\sum_{n=-\infty}^{\infty} J_{n}(x) t^{n}
$$

show that $J_{n}(-x)=(-1)^{n} J_{n}(x)$.
8. The quantum mechanical angular momentum operator is given by $\vec{L}=i \vec{r} \times \vec{\nabla}$. Show that

$$
L_{ \pm}=L_{x} \pm i L_{y}= \pm e^{ \pm i \varphi}\left(\frac{\partial}{\partial \theta} \pm i \cot \theta \frac{\partial}{\partial \varphi}\right)
$$

9. Consider the Hermite differential operator $2 H=-\frac{d^{2}}{d x^{2}}+x^{2}$ and the raising and lowering operators $a_{ \pm}=\frac{1}{\sqrt{2}}\left(x \mp \frac{d}{d x}\right)$. Show that $\left[a_{-}, a_{+}\right]=1$, and $\left[N, a_{ \pm}\right]= \pm a_{ \pm}$where $N=a_{+} a_{-}$. Express H in terms of N. Let $\psi_{n}(x)$ be the eigenstate satisfying $N \psi_{n}(x)=n \psi_{n}(x)$. Deduce that $\psi_{n}(x)$ is an eigenstate of H with eigenvalue $\left(n+\frac{1}{2}\right)$, i.e. $H \psi_{n}(x)=\left(n+\frac{1}{2}\right) \psi_{n}(x)$.
10. Find the Laurent series expansion of the function $f(z)=\frac{1}{(z-1)(z-2)}$ in the annulus $1<|z|<2$ by direct expansion. (Hint: first express $f(z)$ in terms of $\frac{1}{z-1}$ and $\frac{1}{z-2}$ and use power series expansion in region of validity). Verify the coefficients a_{0} and a_{-1} using the formula $a_{n}=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{z^{n+1}} d z$ where $f(z)=\sum_{n=-\infty}^{\infty} a_{n} z^{n}$.
11. Find the residue at $z=-i$ of the function $\frac{1}{z^{4}-1}$. Find the integral $\oint_{C} \frac{1}{z^{4}-1} d z$ where C is a circle of radius $\frac{1}{2}$ centered at $z=-i$.
12. Using contour integration evaluate the definite integral $\int_{0}^{2 \pi} \frac{1}{3+2 \cos \theta} d \theta$.
